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P L A N E  E L A S T I C  P R O B L E M  W I T H  

I N C O M P R E S S I B I L I T Y  A N D  G E O M E T R I C  N O N L I N E A R I T Y  

V.  D .  B o n d a r '  UDC 539.3 

The plane problem is among the best-studied problems in the theory of elasticity. This is because the 
initial condition of the problem can be approximately realized in a number of cases of practical importance 
and because the problem can be studied using a complex analysis, which permits developing effective 
solution techniques to the investigation of the problem. Below, the plane problem is considered as applied to 
incompressible materials under geometrically nonlinear conditions. 

Incompressible materials are widely used. Among them are, for example, a number of constructional 
as well as rubber-like and polymer materials. Incompressibility imposes a certain restriction on strain, and 
this leads to modification of the law of mechanical behavior. 

Allowance for geometric nonlinearity in one or another form becomes necessary when the displacement 
gradients or their combinations can no longer be considered small over the entire body volume. This situation 
usually occurs in flexible bodies, in bodies with cavities near inner and outer boundaries, etc. Geometric 
nonlinearity modifies strain-displacement relations and gives rise to nonlinear terms in these relations. 

Let us study the effect of incompressibility on nonlinear deformation within the framework of the plane 
problem using the theory of nonlinear elasticity developed by V. V. Novozhilov [1]. 

The static problem of elasticity includes relations between strains and elongation shears and rotations, 
representation of the latter quantities in terms of displacements, stress-strain relations, and equations of 
equilibrium subject to boundary conditions on the body surface. We represent these relations in terms of the 
actual state variables of the material. 

In the actual variables, the stresses and strains are characterized by the symmetrical Cauchy P and 
Almansi r tensors. The tensor r is expressed in terms of the displacement vector u and the tensors e and w. 
which are related to elongation shears and rotations by the following nonlinear formulas [2]: 

2 r  V u = e + w ,  u V = e - w .  

Here Vu and u V  are the displacement gradient and the transposed displacement gradient. 
The theory of Novozhilov [1] assumes that the elongation-shear and rotation components e ~  and w~z 

are small in comparison with unity, and the former are of the same order as the product of the latter: leazl << 1 
and [wa~l << 1, where leap[ ,'- Iwavwvr[ (summation over twice-repeated subscripts is implied). By virtue of 
these assumptions, the strain tensor is given by an approximate nonlinear formula if only terms of the order 
of e are retained in the general expression of the tensor: 

2 r  2 e = V u + u V ,  2 w = V u - u V .  (1) 

Consequently, in this theory, the strain components r will also be small quantities ([r << 1). 
The Cauchy and Almansi tensors are related by Murnaghan's law [3]. This law follows from the energy 

balance equation applied to an isothermical virtual displacement ~x of the medium in the actual state: 
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pdF/d~ : 
equation written by means of the strain-tensor variation 

2 ~  = (V ,x ) .  (G - 2r + (G - 2~)- (*xV) 

~e = P : (V,x) ,  F = F(e) (p and F are the density of the material and the free energy). This 

(G is a metric tensor) in the form 

[ dr] 
P -  p ( G -  2e) . ~ : ( V 6 x ) = 0 ,  

gives Murnaghan's law in the form 

(2) 

de  1 

de 

relation (6) gives Hooke's law 

(3) 

P = p(G - 2~) dF/de  (4) 

for arbitrary independent components of the gradient VSx. 
The density of the material is defined in terms of the initial density p0 and the basic strain invariants 

61, e2, and ~3 by the formula [3] 

p = p 0 ~ / 1 - 2 e l + 4 ~ 2 - 8 e 3  [el = t r y ,  2r = ( t r e )  2 - t r e  2, ~3 =de te ] -  (5) 

For an isotropic material, the free energy will also be a function of the strain invariants F = F(el,  e2, e3). 
For small strains, the invariants el, ~2, and ea are small quantities of the first, second, and third order, 

respectively. In this case, the law (4) admits the approximate expression [4] 

dF  dF dF  dF.  
P = po--~e + (p - po)-~e - 2pe.  - -~  .~ d---~' F,  = poE. (6) 

For the quadratic representation of the free energy F, = (1/2)Ae 2 +/z(e 2 - 2e2), A and # = const (A and 
are the Lamd coefficients of elasticity) with allowance for the tensor gradients of strain invariants 

d~3 
= G, de2de = elG - ~, de = e2G - ele + g2, (7') 

P = Ar + 2/~. (8) 

The equation of equilibrium for a material with bulk-force density f has the form [2] 

P . V + f = 0 .  (9) 

Mixed conditions are usually specified on the body boundary: the displacement h on the part ~tt of 
the surface and the stress p on the other part Ep: 

u E ~ = h ,  P - n [ ~ . v = p .  (10) 

Here n is the unit vector of the outer normal to the body surface. 
Equations (1), (8), and (9) and conditions (10) form the static problem for a compressible material in 

the geometrically nonlinear model of elasticity [5]: 

P - V + f = 0 ,  P = A e l G + 2 # e ,  el = t r e ,  A=const ,  # = c o n s t ,  
(11) 

2 e = 2 e + w . w ,  2 e = V u + u V ,  2 w = V u - u X T ,  u[n = = h ,  P . n ~ . p  = 
| 

p. 

For an incompressible material, these relations need modification. 
Under incompressibility conditions, the initial dVo and actual dV volumes of a typical elementary 

particle are equal (dVo = dV).  Therefore, the condition of conservation of mass under deformation (pdV = 
podVo) leads to the coincidence of the initial and actual density (p0 = p). In this case, relation (5) is simplified 
and is the incompressibility condition in the form of a constraint on the strain invariants: 

61 -- 262 + 4r = O. (12) 
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In the case of small strains, Eq. (12) admits linearization: 

el = 0 .  (13) 

If the material is incompressible, some components of the gradient VSx are dependent and connected 
by one relation. This relation is established by varying (12) using expressions (2) and (7), and it has the form 

- 2 ~ + 4 --~r : & = [(1 - 2~1 + 4~2)G - 8(e2e - ~le 2 + ~a)] : (VSx) = 0. 

With allowance for (12) and the Hamilton-Kelley identity [6] for the strain tensor e a - r 2 + e2r - saG = 0, 
this relation is simplified and takes the form 

G:  (Vax) --- 0. (14) 

Thus, the constraint imposed by incompressibility on the virtual displacement gradient components does not 
depend on strain and is of the same form for both finite and small deformations. 

To deduce the law of behavior of an incompressible material, we multiply condition (14) by the Lagrange 
multiplier q and add the result to relation (3) for this case. As a result, we obtain the equality [P + qG - 
(G - 2e) (dF, /de)]:  (Vax) = 0, where F, is defined by formula (6). 

Let us use the arbitrariness of the multiplier q so that the coefficient of the dependent component 
of the gradient VSx vanishes. Then, terms with independent components of the gradient will remain in the 
relation, and, by virtue of the arbitrariness of the components, their coefficients must become zero. As a 
result, the coefficients of all gradient components become zero, and this leads to the modified Murnaghan's 
law P = - q G +  (G - 2e) (dF, /dr  where F,  = F,(e) .  In this law, the Lagrange multiplier has the meaning of 
hydrostatic pressure; as to the free-energy arguments, they must be related by the incompressibility condition. 

For small strains, the law assumes the form P = - q G  + (dF, /dr  and for the quadratic representation 
of the free energy [which corresponds to an isotropic body and takes into account condition (13)], F, = -2#e2, 
it gives the modified Hooke's law 

P = - q G  + 2/zr (15) 

Thus, the boundary-value problem with consideration for incompressibility and geometric nonlinearity 
contains Eqs. (1), (9), (13), and (15) and condition (10): 

P . V + f = 0 ,  P = - q G + 2 p e ,  p = c o n s t ,  e l = t r r  
(16) 

2 ~ = 2 e + w - w ,  2 e = V u + u V ,  2 w = V u - u ~ 7 ,  u 2 ~ = h ,  P - n ~ z p =  p" 

In contrast to the similar problem (11) for a compressible material, an additional unknown quantity. 
hydrostatic pressure, appears in relations (16); however, they also include an additional equation, i.e., the 
incompressibility condition. Therefore, the system of equations remains closed. 

For plane deformation parallel to the bases of a cylindrical (or prismatic) body, the plane problem of 
[7] in which Eqs. (16) hold in a plane region S, which is the section of the body by the plane of deformation. 
and the boundary conditions are satisfied on the boundary L of this region, is basic. In the Cartesian x and 
y coordinates of the actual state which are defined on the plane of deformation, the relations of the plane 
problem follow from (16), and in the absence of bulk forces, they have the form 

O P** O P.y O &y O Pyy 
= - -  = 0 ,  P : : z = - q + 2 # e ~ : ~ ,  P~y=-q+2#r 

Ox + Oy O, Ox + Oy 

2 2ey r 2err 2 (17) Pzy = 2#~zr, 2ezz = 2 e ~  - w z r  , = - w z  r, ~zr ---- ezr, 

Ou r Ou~ Ou r _  Ou~ Ou,: Ou r 2e~r = + - -  2w~r = _ _  - - ,  
e ~  + err = O, e~,: = Ox ' e r r =  Oy ' Ox Oy ' Ox Oy 

= hz(s), u r = hr(s),  PxxdTY - -  P~rd-~7_ p~(s), Pzrd-d~y--_Y_ Pry d-x-_ py(S). (18) Ux 
Lp '~ Lp---- Lu Lu 

305 



Here the Cartesian components  of the vectors and tensors are denoted by the same symbols as the quantities 
themselves, but with letter subscripts; Lu and Lp are parts of the boundary L on which displacements and 
stresses are defined, respectively; s is an arc of L; we take into account that  the components  of the normal to 
the contour L are representable in terms of the equations x = x(s) and y = y(s) by the formulas n~ = dy/ds 
and ny = - dx /d s .  

Relations (17) permit  obtaining first-order equations for stresses and rotation. Indeed, the 
incompressibility equation and the law of mechanical behavior give a representation of pressure in terms 
of stresses, q = - (1 /2 ) (Pzz  + Pyy), with allowance for which the strains are also expressed only in terms of 
stresses by the formulas 2#ezx = (1/2)(P~, - Pyy), 21zzyy = (1/2)(Pyy - Pzx), and 2/zezy = P::y. Eliminating 
the displacements from the expressions for displacement gradients in terms of stresses and rotation, 

Ouz Ou, 1 (p** _ py,) + ~tw2 , 2# ~ Pzy - 21zw~y, 
2# Ox = "2 = 

Ouy 1 2 Ouy 
2lz Oy = 5 (Pyy - P ~ )  + tzwzY' 2p ~ = P~y + 2ttwzy, 

we obtain compatibili ty equations for stresses and rotation. Supplementing them by the equilibrium equations 
[the first two equalities of (17)] gives the desired system 

( i ) l  -- .  ( ~ ( P z z  - Pry) O Pzy [ OOdxy Oo3zy ~ 
Oy - 2 - - ~ - z  + 4 # ~ - ~ ' x  +wzY r ] = 0 ,  

- 2 + o y  J = o,  

OP y OR. OP~ OP,:y = O, r = + = O. 
�9 3 -  + Oy Oz 

Assuming that  the force conditions (18) are defined over the entire boundary 

Pz dz dx 
P . z ~  - y'~a L = PZ(S), P z y ~ -  Pyy-~-S[L = PY(s), (20) 

we have the plane boundary-value problem (19) and (20) for stresses and rotation. 
To investigate the type of system (19), for convenience, we introduce the following notat ion using 

subscripts for the desired functions and their arguments: wl = Pz~, w2 = Pyy, wa = Pxy, and w4 = w~y; 
X l = x a n d x 2 = y .  

Let us consider, following [8], the characteristic determinant  

A . = d e t ( a k l ) ,  A k t =  ~ OdPk/O am aZm=l k , l = ~ , 4  . (21) 
~.=t \ Ox,,,] _ ,,~ ' 

By virtue of (19) and (21), the determinant  and its elements have the following values: A .  = 4#(r + ~r22) e 
and A n  = a2, A12 = -or2, A13 = - 2 a l ,  A14 = 4 p ( a l + w 4 a 2 ) ,  AZl = - a l ,  A22 = a i ,  A23 = -2a2.  
A24 = -,#(w4al - a2), A31 = a l ,  A32 = 0, A33 = 0'2, A34 = O, A41 = O, A42 = a2, A43 = (rl, and A44 = 0. 

Since # > 0, we have A .  > 0. Therefore, the characteristic equation A.  = 0 has no real roots. Thus. 
the quasi-linear system (19), as the corresponding system for linear elasticity, is elliptic, and the boundary 
problem (19) and (20) is correct for it. 

Let us go over from the Cartesian to the complex coordinates z and 5 on the plane of deformation 
using the formulas 

z = x + i y ,  5 = x - i y ,  2 0-~- 0 . 0  2 ~ 0 i O  

and consider the complex vector and tensor components (which are denoted in the same way as the quantities 
themselves but with numerical  superscripts).  They are related to the Cartesian components  by the relations [5] 

u 1 = - ~ = u z + i u y ,  p1 = p 2 = p ~ + z p y ,  p l l  = p 2 2 = p z ~ _ p y y + 2 i P z y ,  
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p21 = p12 _- Pzz 4- Pyy, e 11 -- 522 = 5zz -- 5yy 4- 2ie~y, e 21 ---- 512 = 5 ~  + 5yy, (22) 

ell = e 22 -~- exx -- cy~ + 2iezy, e 21 ---- e 12 --~ ezz "~- eyy, 0311 _-- 0322 -- 0, 0321 _-- 0312 _-- 2i03zy. 

Then, Eqs. (17) and conditions (18) are written in compact form as 

Op 11 Op 21 
0---'~ + 02 = O, p l l  = p22 = 2tt511, p21 = p12 = -2q ,  511 = 522 = e 11, 

Oul (23) 521 = 512 ---- e21 + (0321)2, 521 = O, e l l  ---- e 22 = 2 0-'-2"-' 

e21 _ Oul Ou-'-f 0321 Oft1 Olt'--i" 

- Oz + --ff[' - Oz 02  ; 

91 i~, = h i ( s ) '  p21~ pnd-~s L, = 2ipl(s)" (24) 

Here one of the two conjugate complex equalities is written. 
It follows from (23) that  hydrostat ic pressure and strain depend only on stresses: 

1 p21 _-- p n ,  e21 q = --2 , 2ire 11 = 2#e 2--g = 0. (25) 

The displacement gradients depend on stresses and rotation: 

Ou 1 1 p l l .  0ul = #0321 103 21~ 2tt - (26) 
2# ~ 1 - 4 ] '  05 2 

The compatibil i ty condition for system (26) gives a compatibil i ty consistency equation for stresses and 
rotation. Together with the equilibrium equation [the first equality of (23)] and the force condition (24) over 
the entire contour, it forms the following boundary-vMue problem for the stresses and rotation, which is a 
complex form of problem (19) and (20): 

o P n  ~5[w ( ~ ) ]  o p n  Op 2' 
~z - 2 ~  21 1 -  w21 ' --Oz + 02 =0; (27) 

P2' ~s - p l l  ~slL = 2ip'(s). (28) 

System (27) admits  full integration and representation of stresses and rotation in terms of potentials. 
and condition (28) leads to a boundary-value problem for the potentials. Indeed, eliminating p l l  from (27) 
gives the equality 

--O[P 21 (1 _ 1  

from which, after integration, we obtain the relation p21 + 2#w21(1 _ (I/4)0321) = 4~(z ) ,  where ~ ( z )  is 
an arbitrary complex potential .  Separating the real and imaginary parts, we obtain the formulas p21 _ 
(#/2) (w 21)2 = 2 (~(z )  + ~ ( z ) )  and 2ttw 21 = 2(~(z )  - qz~(z)), which define the real stress p21 and the purely 
imaginary rotation w 21 as functions of the complex potential: 

1 p21 = 2(cy(z) + opt(z)) + ~ (~(z)  - ~'(z)) 2, /20321 : ~'(z) - q#(z). (29) 

In view of (29), the second equality of (27) becomes the equation for the complex stress p l l ,  

+ - = 0 ,  
Oz [ tt 

and, as a result of integration, it leads to the expression 

p l l  = -2(z!z"(z) + ~'(z)) - 1 ~,,(z)(zc2,(z) _ ~(z)). (30) 
# 

307 



Here ~b'(z) is an arbitrary function and the second complex potential. Thus, in the general solution (29) and 
(30) of Eqs. (27), stresses and rotation are expressed in terms of the complex potentials by nonlinear formulas. 
Substitution of the solution into condition (28) leads to the expression 

• § z , zl §  lzl § -   l l 'lzl § } : 

which, after integration along the contour, takes the form of a boundary problem for the potentials: 

1 Y ( c 2 ( z ) , ~ o ( z ) )  L = gl(s)' + zr  + r + 

g(~o(z), ~(z)) = z~'2 (2.) - 2V(z)~'(z) + f ~012(z) dz, (31) 

$ 

g l ( s )  = i f p l ( s )ds  + C, C = const. 
0 

Thus, in the geometrically nonlinear model of elasticity, the plane problem for stresses and rotation for an 
incompressible material reduces to the nonlinear boundary-value problem for complex potentials. The resulting 
potentials correspond to the complex stresses and rotation, and the latter correspond to the actual stresses 
and rotation defined by the inverted formulas (22). 

It should be noted that the reduction of problem (27) and (28) to the potential problem (31) can also 
be performed by another method. Introduction of the real stress function U(z, 2.) by the formulas 

02U (32) 02U p21 = p12 = 4 Oz 02. pl l  = p 2 2  = - 4  022 , 

reduces problem (27) and (28) to the boundary-vMue problem for U and w21: 

~214 02U (1 = 20U 

The latter, in turn, reduces to the problem for the potentials. Indeed, integration of Eq. (33) leads to the 
relation 

02U lw21] = 4~0' (z), 4 0 - ~  + 2ttw21(1 - 4 " 

where ~(z)  is an arbitrary function, and separation of the real and imaginary parts gives 

02U # (w21) 2 = 2(~2'(z) + ~'(z)), #w 21 = ~'(z) - ~'(z). (34) 
40z  0-~ 2 

The formula obtained for the rotation coincides with (29). With allowance for this expression, the first 
equality of (34) is transformed into the equation 

02U 1 
20zO---'-~ = ~'(z) + ~'(z) + ~ (qO'2(z) - 2~o'(z)~'(z) + c}'2(2)), 

and integration of the latter with allowance for the reality of U gives the following nonlinear representation 
for the stress function in terms of the complex potentials c2(z ) and ~b(z): 

' 2. + ( z ) e z  (35) 

Now it is easy to see that expressions (29) and (30) for stresses in terms of potentials follow from (32) and 
(35), and the boundary-value problem for the potentials (31) follows from (35) and condition (33). 

Using the representations of stresses and rotation in terms of potentials, we can consider the relations 
(26) as equations for displacements. The compatibility condition for the equations is satisfied: this is the first 
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of Eqs. (27). Hence, the displacement differential has the form 

( 1 )  [ ' 
d(2#u 1 ) = t t w  21 1 - ~ w  21 d z +  p l l d 2 = d  ~ p ( z ) - z ~ 2 ' ( z ) - ~ b { z ) -  

where N is defined by formula (31). Hence, the displacement itself is represented in terms of potentials by 
the nonlinear expression 

2ttu I = ~(z) - z~ ' (z)  - ~b(z) - ~ N(zp(z), ~2(z)) +cons t .  (36) 

The additive constant entering into this expression corresponds to the rigid translation of the body; it is 
insignificant and can be omit ted.  

Finally, using relations (25) and (29), we can express the hydrostatic pressure in terms of potentials: 

1 
q = - (~J(z)  + ~'(z)) - ~ (V'(z) - ~'(z)) 2. (37) 

Comparison of expressions (29), (30), (36), and (31) for stresses, rotation, displacement,  and the 
boundary condition for potentials  for incompressible materials with the corresponding expressions obtained 
in [5] for compressible materials using the same nonlinear model and the same boundary conditions, 

p H  = -2 (z~" (z )  + r  - 2 1 - v ~"(z-----)(z~'(z) - ~(z)) ,  
# 

l - z /  
p21 = 2(~'(z) + ~'(z))  + - - ( ~ ' ( z )  - ~--~-~)2, 

tt 

2~u 1 = (3 - 4v)~(z) - z~ ' (z )  - r  

ttw 21 -- 2(1 - ~')(r - ~'(z)),  

- -  N ( ~ ( z ) ,  ~p(z)),  
2it 

1 - V g  z 
~(z) + zr  + r + - 2 7  (~() '  ~(z))[L = gl(~), 

where v is the Poisson coefficient, shows that  the former relations follow from the latter for v = 1/2. This 
allows one to consider an incompressible nonlinear material  as a limiting compressible nonlinear material for 
which the Poisson coefficient is equal to 1/2. 

As was established in [5], for weak (in comparison with tL) loads, the formulas of linear elasticity 
follow from the formulas of nonlinear theory in which nonlinear terms are omit ted.  Applying this method to 
(29)-(31), (36), and (37), we obtain the following relations for a linear incompressible material: 

p l l  = - 2 ( z ~ " ( z )  + r  p21 = 2(~'(z) + ~'(z)),  ttw 21 = ~'(z) - ~p'(z), 

2#u '  = ~ ( z )  - z ~ ' ( z )  - ,~(z), q = - ~ ' ( z )  - ~ ' ( z ) ,  ~ ( z )  + z r  + ~ L = g ' ( ~ )  

If the displacement vector or the stress vector are specified over the entire boundary of a body, the 
boundary problem for potentials  has the form of one of the complex conditions 

~p(z) - z~ ' ( z )  - ~b(z) - (1/4it) N ( ~ ( z ) , ' ~ " ~ )  L = 2#hi(s) '  
(3s) 

~(z )  + z~ ' (z )  + r  + (1/4#) N(cp(z),~p(z)) L = gl(s)" 

These problems are nonlinear and of the same type. In some of cases, an approximate solution can be 
found by expansion in terms of a small parameter.  

Let us consider the problem of stresses under weak-load conditions when the characteristic pressure 
P0 is small in comparison with the shear modulus #. Then,  the dimensionless stress ~ = Po/tt is a small 
parameter  (a << 1). Expanding the complex potentials in terms of this parameter  

~2(z) = ~ c r ~ ( z ) ,  ~b(z) = ~cr"~bv(z) (39) 
0 0 
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and substituting them into the second condition (38), we find that the latter reduces to a sequence of boundary- 
value problems for the component potentials ~v and ~bv: 

r = = o, 1 , 2 , . . . ) .  (40) ~v(Z) + Z~Jv(Z) + 

Here v0 = gl, vv+l = - ( 1 / 4 P 0 )  N . ,  and 

N0=zqb~ 2 - 2 ~ 0 4 ; +  ~0 dz; 

_, _, _, -, [ ' '  
N1 = 2(ZqOo~P 1 -- cPocF1 -- ~Plq~O + ~O~Ol dz); 

--I - I  - I  - I  - I  / 12 I I 
N2 = 2 + 2 o 2) - 2( o 2 + + + + dz; 

and the zero approximation corresponds to the linear elastic problem. In the problem for the vth 
approximation, the right side of the boundary condition is defined by previous approximations and is thereby 
known. Therefore, each pair of potentials ~v and ~v is found, according to (40), from the boundary-value 
problem of linear elasticity; the methods for solving the latter are known [7]. 

Substitution of expansions (39) into formulas (29), (30), (36), and (37) gives the following expansions 
of stresses, rotation, displacement, and pressure in terms of parameters: 

(20 GO GO OO {20 
p l l  = Z O'u'p21' p21 = Z O'vp21' ~Od21 = ~ ~ 0ry0321, 2~Ul = 2~ E O'y~l' q = E avqv" 

0 0 0 0 0 

Here the zero approximation is defined by the potentials of linear elasticity, and the vth approximation, by 
the vth and all previous component potentials. 

Linear problems for the potentials can be obtained by setting boundary values different from those in 
(38). Let us consider two cases. 

Let the displacement hx(s) and the stress pz(s) [and, hence, gz = fpz(s)ds] be specified on the entire 
boundary, and let the displacement h~ be specified at the boundary point O. Then, the potentials should be 
found from the two real conditions 

which can be transformed into the Dirichlet problems for each potential: 

Rev(z) L = k(s), Re~(z)  L = t(s). (41) 

Here k = (1/2)gz + #h~ and l = gz - Re {r + z~'(z) + (1/4/~)N(~,~)} L" 
Successive solution of these problems (wherein the solution to the first problem determines the right 

side of the expression for the second) gives the potential values ~(z) and ~b(z) with accuracy to the additive 
constants iAv and iBm, respectively [9]�9 The constant By does not affect the stresses and rotation and in the 
expression for displacement, it is additive; it is insignificant and can be taken equal to zero. The constant Ay 
is significant; it is specified by the condition Imul(z0, 50) = h~ at point O. 

If the rotation wzy(s) is specified on the entire boundary, and the stress p~(s) and the quantities h ~ 
and p0 are specified at the boundary point O, then, according to (29), the potential i~'(z) is determined from 
the Dirichlet problem 

Re (iqa'(z)) L = -#w~:v(s) (42) 

with accuracy to the constant lAy, and the potential ~;(z) (calculated by quadrature) is determined with 
accuracy to the constants A v and C = C~ + iCv. The potential ~b(z) is found from the second condition of 

310 



(41) with accuracy to an insignificant constant. The constants entering into the potentials are determined 
from the conditions 

( ) 1 o o p21 dz _ p l l ( z o , 2 o )  = 2i(p o + ipO)" Re  (z0) = + uh , (zo, o o 

It should be noted that in the case of a simply connected region, it can be conformally mapped onto 
the interior of a circle of unit radius. Then, the Dirichlet problems (41) and (42) will be formulated on its 
circumference, and their solutions can be represented by the Schwartz formula [9]. 
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